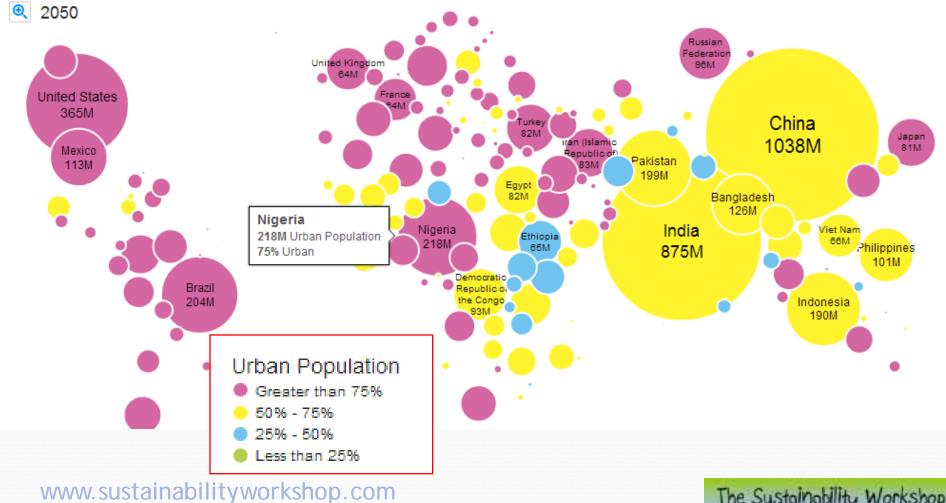


Modifying the Green Roof for Down under: A feasibility assessment of a rooftop urban farm

Liebman, M.<sup>1</sup>, Wark L.<sup>2</sup>, Mackay, C.<sup>3</sup> The Sustainability Workshop Ltd<sup>1</sup> Verdaus Landscape Architects<sup>2</sup> Enstruct Structural and Civil Engineers <sup>3</sup>




- Examine the feasibility of modifying the typical European green roof for a dry hot climate
- Our modified green roof takes the form of a commercial urban rooftop farm
- We test our idea on a distribution centre near Sydney by modelling its physical performance & productivity
- and we test its economic feasibility
- Conclusions

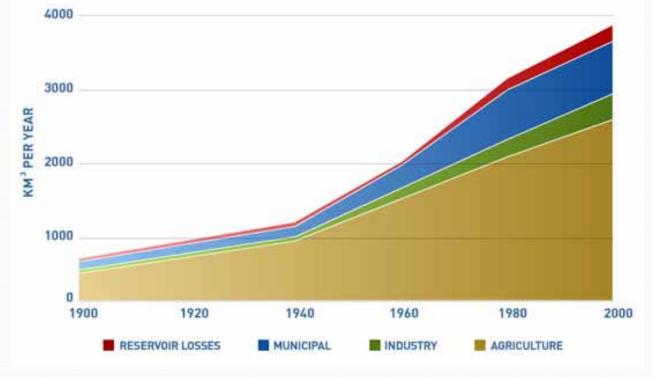
# The big picture

What is the current context, where are we going and how have things changed over time?

## 2050 UN population - urban %



## World Demand for Water


ESTIMATED WORLD WATER USE

#### Source: Food & Agricultural Organisation

2000 demand: 4,000 km<sup>3</sup> / year

2050 demand: 6,000 km<sup>3</sup> / year

 $1 \text{ km}^3 = 1 \text{ billion cubic metres}$ 



www.sustainabilityworkshop.com

### **Climate reduced Water Availability**

35000

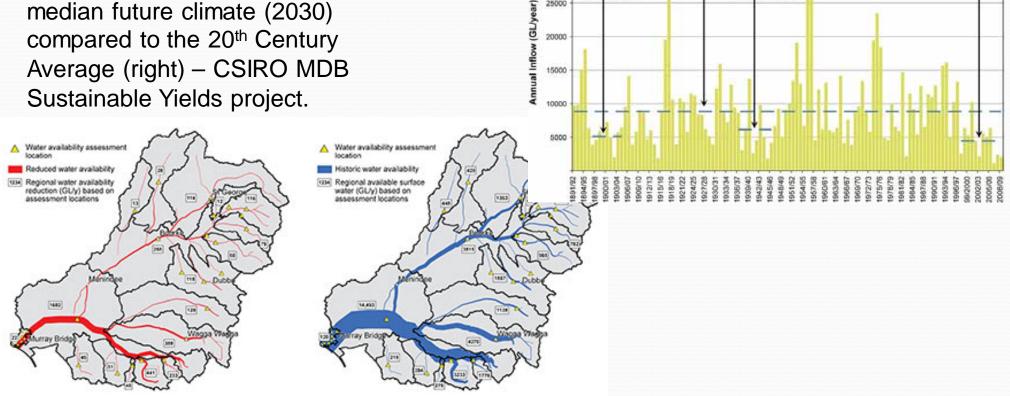
30000

25000

20000

15000

Average 1896-1905


5115 GL (42% less)

Average 1891-2009 8853 GL (total period)

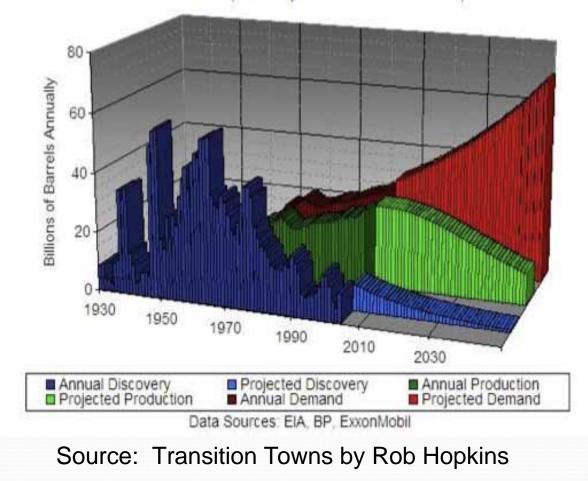
Average 1936-1945

6140 GL (31% less)

Decline in dry year water availability in the Murray-Darling Basin under a median future climate (2030) compared to the 20<sup>th</sup> Century Average (right) – CSIRO MDB Sustainable Yields project.

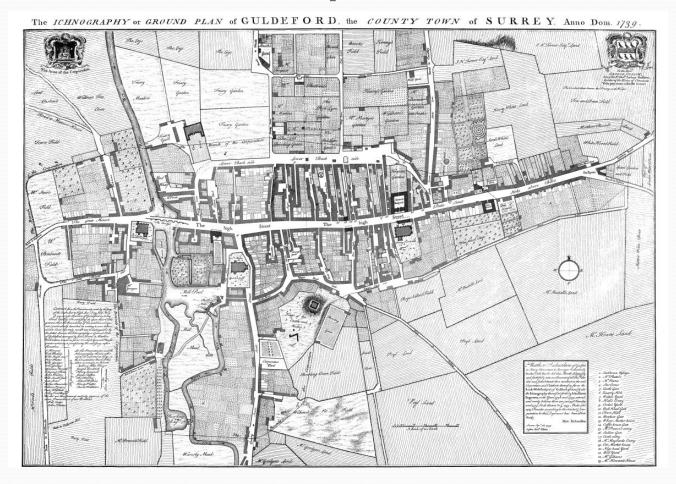


www.sustainabilityworkshop.com


Average 1997-2009

4,454 GL (50% less)

# Peak Oil


- Oil production is arguably peaking now!
- From here on the price of oil will increase.
- Brings into question the sustainability of "import from far away" food supply model adopted by most cities.

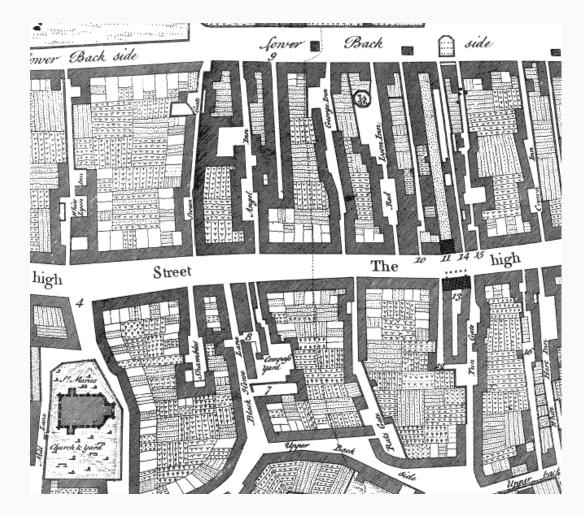
World Overview (Discovery, Production and Demand)



www.sustainabilityworkshop.com

## Was the past different?




Guildford Surrey in 1739

Is virtually a food map. Food production is most prevalent land use next to buildings and roads

High Street fronted by buildings with almost every other space devoted to food growing.

Source: Transition Town Totnes website.

- 18C Food was grown in every available space.
   "Food miles" didn't exist.
- 19C Cities largely fed from its hinterland.
- 20C Home & market gardens and peri urban areas made a valuable food contribution esp in WW2.
- 21C urban land too valuable to farm!



#### Modern Day Oz Industrial estates



Yenora – 30 Ha under roof - \$370Million value = \$1146/m<sup>2</sup>

1 mm runoff = 300 kL10 mm runoff = 3 ML

Prospect Creek is 600m from site.

Intermodel facility with more buildings to come.

## Modern Oz Industrial – cont'd



- Erskine Park
   Industrial Estate
   24 Ha Impervious
   area directly
   connected to a
   western Sydney
   Creek.
- Every m<sup>2</sup> of land is heavily contended

Impacts & Management of Direct Connection

- Argue, Wright, Wong & Brean, Ladson, Walsh, Fletcher, Central West CMA (STORM\_Consulting) & others
- Little Stringy Bark Creek Group working on Residential Areas.
- CWCMA WSUD Policy water quantity focus on residential only noting industrial/commercial development is intractable.
- Warnervale Council & consultants developed a complex centralised approach to pump water around the receiving water to protect it. Grant funding req'd to be viable.

## Looking further afield...



Green roofs have been in the European vernacular for thousands of years

### **European Response**



- Green roof and permeable pavers
- Virtually no runoff from site.
- Suitable for wet cool climates such as northern Europe.
- Not suitable for Australia - too dry!

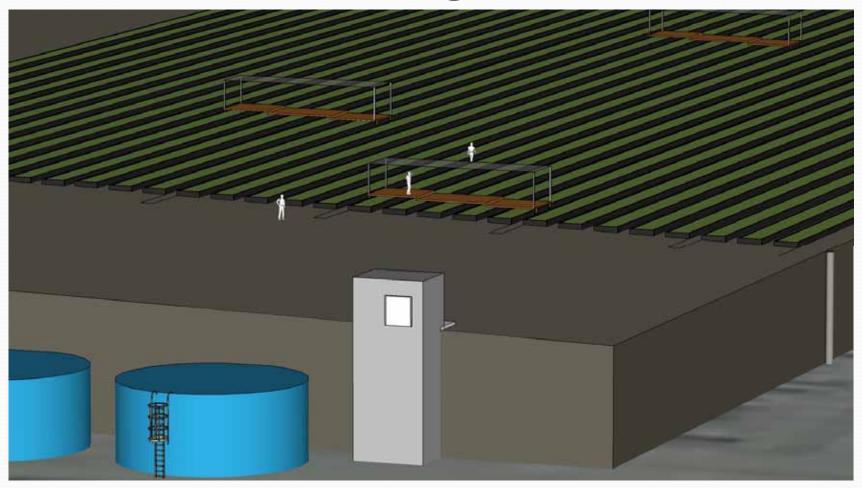
### **USA** response

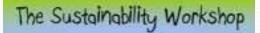


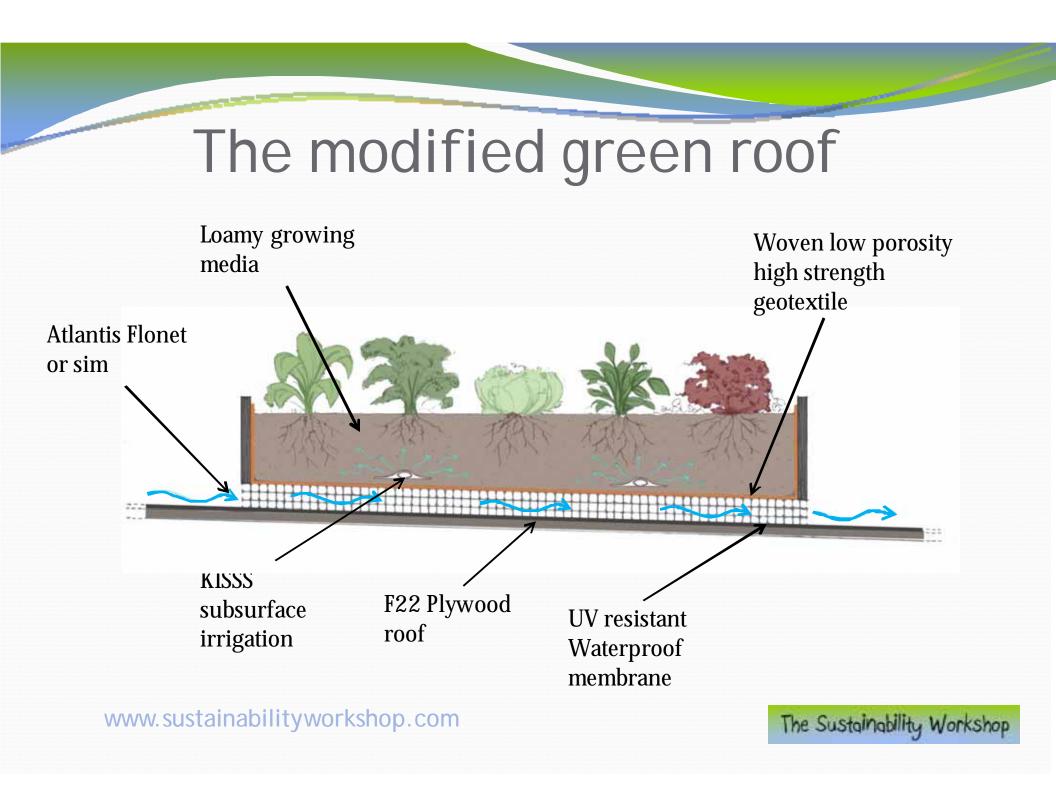
- Ford Motor Co.
   Rouge Plant in Michigan
- 4.2 Ha of sedum roof.
  - Again not
    suitable for Oz
    conditions.
    Vegetation
    would dry out.

## What is suitable for Oz?

- Very hot and dry summers
- Mild winters sometimes
- Drought 2/3 of the time
- Flood the other third
- Rivers and creeks very sensitive to direct connections
- Food grown in MDB & Tasmania -> high food and water miles.
- Water availability in Basin is reducing.
- Market gardens being driven out of cities.
- CRC for Water Sensitive cities recognises need for productive urban landscapes. This paper tests viability of creating productive landscapes on top of large industrial buildings.


#### The modified green roof





- 8Ha roof
- 200m wide
- 400m long
- Green roof = 2Ha
- Beds 300m long
- Beds 2m wide
- 1m aisle between
- Rolling platforms
- 6 off 1ML tanks

#### www.sustainabilityworkshop.com

## The modified green roof







### Assessment Methods - Water

- Water balance using MS Excel and MUSIC
- Key facts:
- Rainfall = 867mm/yr at Prospect
- ETo = 1144mm/yr
- Irrigation Demand Drip irrigation with 85% efficiency
- Demand about 1.1m/yr
- Soil storage 58mm and Field Cap 53mm 300mm soil depth.
- Tested various scenarios increasing green roof area in 1 Ha increments -1 Ha, 2 Ha and 3Ha.
- Method allowed for modelling rainfall + irrigation + ET from beds & roof allowing circular process to be modelled.

#### Assessment Methods - Structural

- Structural calculations undertaken by Enstruct.
- Retrofit scenario not viable loads too high -> too expensive
- New Build reduced column spacings in both directions
- Larger purlins required beams remain UB54. Extra columns not significant. Extra over steel = 350 tonnes from extra beams.
- Greenroof constructed-> F22 Plywood + waterproof membrane
- Gantry on 15m span extra beams required at 15m
- Gantry allowed 500kg loading
- Further optimisation possible 300 tonne extra possible??

#### Assessment Methods – Agro-economic

- Detailed construction & operation costs prepared refer to paper for more details.
- Estimated volume of produce based on ABS farm statistics likely to be much higher controlled environment.
- 80 tonnes/annum produce
- Estimated value of produce based 35% of actual retail prices
   bagged baby greens retail @ \$32/kg > \$11/kg wholesale
- Most baby greens grown in Tasmania 1600 km to Sydney.
- We allowed for labour, management, bonuses, washing, packaging & delivery etc – ideally supply direct into distribution centre.

#### Results - raintank water balance

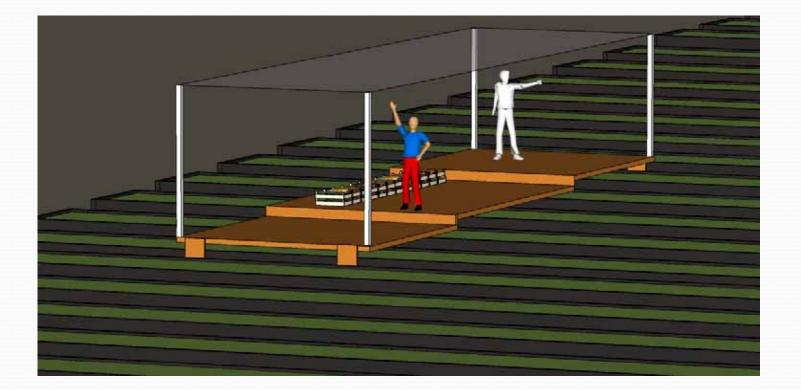
| Area of<br>imperv<br>roof (Ha) | Area of<br>Green Roof<br>(Ha) | Flow in<br>(ML/yr) | Flow out<br>(ML/yr) | Runoff<br>frequency<br>(Events/yr) | Reuse<br>requested<br>(ML/yr) | Reuse<br>supplied<br>(ML/yr) | % Reuse<br>Demand<br>Met<br>(%) |
|--------------------------------|-------------------------------|--------------------|---------------------|------------------------------------|-------------------------------|------------------------------|---------------------------------|
|                                | No green                      |                    |                     |                                    |                               |                              |                                 |
| 8 Ha                           | roof                          | 61                 | 61                  | 149                                | 0.00                          | 0.00                         | 0                               |
| 7 Ha                           | 1 Ha                          | 60                 | 47                  | 44                                 | 11.30                         | 11.30                        | 100                             |
| 6 Ha                           | 2 Ha                          | 58                 | 35                  | 25                                 | 22.60                         | 22.15                        | 98                              |
| 5 Ha                           | 3 Ha                          | 57                 | 25                  | 21                                 | 33.90                         | 30.24                        | 89                              |

## Levelised costs of water

| \$/Yield Calculations   |         |          |          |
|-------------------------|---------|----------|----------|
| Interest Rate           | 4.0%    | 7.0%     | 10.0%    |
| Annual Cost             | -77,537 | -107,266 | -140,572 |
| Annual Cost \$/kl Yield | -\$3.50 | -\$4.84  | -\$6.35  |
| Levelised cost\$/KL     | -\$3.31 | -\$4.48  | -\$5.74  |

Late idea: reduce costs of tanks by replacing with inground storage - save approx \$500k and reduce levelised costs down to \$1.50/kL

# Life cycle costs


| Life cycle costing                    | 000'       |
|---------------------------------------|------------|
| Capital expenditure                   | 6,913      |
| Less cost of treatment including land | 900        |
| Net Capital expenditure               | 6,013      |
| Operating expenditure                 | 444        |
| Payback                               | 13.6 years |
| Revenue from 80 tonnes of production  | 880        |
| Net present value - 4% discount       | 1,535      |
| Internal Rate of Return               | 6.0%       |

| Embodied Energy                   | 600 tonnes of CO2 |  |  |  |
|-----------------------------------|-------------------|--|--|--|
| Reduced food miles                | 27 tonnes/annum   |  |  |  |
| 22 years to become carbon neutral |                   |  |  |  |

## conclusions

- System proposed can produce 80 tonnes of food locally
- It can reduce runoff frequency from 150 down to 25 days/yr
- Will save 22 ML/yr keeps the  $H_20$  in Tasmania or the MDB
- Could supply directly into the distribution network for unbeatable freshness
- Sensitive to wholesale price 10%++ ROI possible in near future
- Cost same to buy 2Ha land & irrigate however not always possible and critically sterilises land.
- With research & optimisation concept has potential to return 10%
- Rather than being a perpetual drain on taxpayers this concept demonstrates it is possible to create economically viable productive urban landscapes!

# Thank you for listening!



www.sustainabilityworkshop.com